Plastid signals remodel light signaling networks and are essential for efficient chloroplast biogenesis in Arabidopsis.
نویسندگان
چکیده
Plastid signals are among the most potent regulators of genes that encode proteins active in photosynthesis. Plastid signals help coordinate the expression of the nuclear and chloroplast genomes and the expression of genes with the functional state of the chloroplast. Here, we report the isolation of new cryptochrome1 (cry1) alleles from a screen for Arabidopsis thaliana genomes uncoupled mutants, which have defects in plastid-to-nucleus signaling. We also report genetic experiments showing that a previously unidentified plastid signal converts multiple light signaling pathways that perceive distinct qualities of light from positive to negative regulators of some but not all photosynthesis-associated nuclear genes (PhANGs) and change the fluence rate response of PhANGs. At least part of this remodeling of light signaling networks involves converting HY5, a positive regulator of PhANGs, into a negative regulator of PhANGs. We also observed that mutants with defects in both plastid-to-nucleus and cry1 signaling exhibited severe chlorophyll deficiencies. These data show that the remodeling of light signaling networks by plastid signals is a mechanism that plants use to integrate signals describing the functional and developmental state of plastids with signals describing particular light environments when regulating PhANG expression and performing chloroplast biogenesis.
منابع مشابه
Light and Plastid Signals Regulate Different Sets of Genes in the Albino Mutant Pap7-1.
Plants possessing dysfunctional plastids due to defects in pigment biosynthesis or translation are known to repress photosynthesis-associated nuclear genes via retrograde signals from the disturbed organelles toward the nucleus. These signals are thought to be essential for proper biogenesis and function of the plastid. Mutants lacking plastid-encoded RNA polymerase-associated proteins (PAPs) d...
متن کاملChloroplast Biogenesis-Associated Nuclear Genes: Control by Plastid Signals Evolved Prior to Their Regulation as Part of Photomorphogenesis
The assembly of photosynthetically competent chloroplasts occurs in angiosperm seedlings when first exposed to light, and is due to the control by light of photosynthesis-associated nuclear genes (PhANGs), also dependent upon plastid-to-nucleus "biogenic" communication signals. The relationship between light- and plastid signal-regulation of PhANGs is close but poorly understood. In contrast, m...
متن کاملSinglet oxygen initiates a plastid signal controlling photosynthetic gene expression
Retrograde signals from the plastid regulate photosynthesis-associated nuclear genes and are essential to successful chloroplast biogenesis. One model is that a positive haem-related signal promotes photosynthetic gene expression in a pathway that is abolished by the herbicide norflurazon. Far-red light (FR) pretreatment and transfer to white light also results in plastid damage and loss of pho...
متن کاملArabidopsis EMB1990 Encoding a Plastid-Targeted YlmG Protein Is Required for Chloroplast Biogenesis and Embryo Development
In higher plants, embryo development originated from fertilized egg cell is the first step of the life cycle. The chloroplast participates in many essential metabolic pathways, and its function is highly associated with embryo development. However, the mechanisms and relevant genetic components by which the chloroplast functions in embryogenesis are largely uncharacterized. In this paper, we de...
متن کاملCoordination of Plastid and Light Signaling Pathways upon Development of Arabidopsis Leaves under Various Photoperiods
Plants synchronize their cellular and physiological functions according to the photoperiod (the length of the light period) in the cycle of 24 h. Photoperiod adjusts several traits in the plant life cycle, including flowering and senescence in annuals and seasonal growth cessation in perennials. Photoperiodic development is controlled by the coordinated action of photoreceptors and the circadia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 19 12 شماره
صفحات -
تاریخ انتشار 2007